Prof. RNDr. Ľubomír Snoha, DSc., DrSc.

alt Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
alt
room 229
alt
+42148 446 7229
alt Lubomir.Snohaatumb.sk

 

Qualification:

  • MSc. - Comenius University, Bratislava, 1978
  • RNDr. - Comenius University, Bratislava,1978
  • CSc. (corresponds to PhD.) - Comenius University, Bratislava, 1986
  • Doc. (corresponds to Assoc. Prof.) - Comenius University, Bratislava, 1989
  • DSc. - Academy of Sciences of the Czech Republic, 2005
  • DrSc. - Comenius University, Bratislava, 2007
  • Prof. - Silesian University in Opava, 2007

Science and research activities:

  • 37-XX Dynamical systems and ergodic theory
  • 54-XX General topology

Selected publications:

  1. Ľ.Snoha: Characterization of potentially minimal periodic orbits of continuous mappings of an interval. Acta Math. Univ. Comenian. 52/53 (1987), 111-124
  2. Ľ. Snoha: Generic chaos. Comment. Math. Univ. Carolin. 31 (1990), no. 4, 793-810
  3. V. Jiménez López, Ľ. Snoha: There are no piecewise linear maps of type $2^\infty$. Trans. Amer. Math. Soc. 349 (1997), no. 4, 1377-1387
  4. Ll. Alsedà, S. Kolyada, J. Llibre, Ľ. Snoha: Entropy and periodic points for transitive maps. Trans. Amer. Math. Soc. 351 (1999), 1551-1573
  5. S. Kolyada, M. Misiurewicz, Ľ. Snoha: Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval. Fund. Math. 160 (1999), 161-181
  6. S. Kolyada, Ľ. Snoha, S. Trofimchuk: Noninvertible minimal maps. Fund. Math. 168 (2001), 141-163
  7. Ľ. Snoha, V. Špitalský: Recurrence equals uniform recurrence does not imply zero entropy for triangular maps of the square. Discrete Contin. Dynam. Systems 14(2006), no. 4, 821-835
  8. J. Auslander, S. Kolyada, Ľ. Snoha: Functional envelope of a dynamical system. Nonlinearity 20 (2007), no. 9, 2245-2269
  9. F. Blanchard, W. Huang, Ľ. Snoha: Topological size of scrambled sets. Colloq. Math. 110 (2008), no. 2, 293-361
  10. S. Kolyada, Ľ. Snoha, S. Trofimchuk: Proper minimal sets on compact connected 2-manifolds are nowhere dense. Ergodic Theory Dynam. Systems 28 (2008), no. 3, 863-876

Teaching activities:

  • Calculus, Mathematical analysis, Discrete dynamical modeling, Dynamical systems, Metric spaces and topology

 

Joomla Templates by Joomla51.com